If it's not what You are looking for type in the equation solver your own equation and let us solve it.
s^2+10s-28=0
a = 1; b = 10; c = -28;
Δ = b2-4ac
Δ = 102-4·1·(-28)
Δ = 212
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{212}=\sqrt{4*53}=\sqrt{4}*\sqrt{53}=2\sqrt{53}$$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{53}}{2*1}=\frac{-10-2\sqrt{53}}{2} $$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{53}}{2*1}=\frac{-10+2\sqrt{53}}{2} $
| 22x-76+2=180 | | 8x+20+5x-15=-20 | | 40=4yy= | | 30=c+2 | | x/3=20/6 | | 2b=462 | | (36+7)-n=10 | | h-5=-211 | | 8x-19+13x-31+7x-11+10x-3+5x+2=540 | | 2(4m+9)=34 | | 5x+8=2x+413x+8=41x=x=11 | | 6(k+2)=32 | | 2.14x-42.9x=22.4. | | 3(z-2)=6 | | 1/2x+42=3/4x-8 | | 4x+3x-5=16+7x-12 | | (3)x=12 | | 9/4x1=9/4x=45/20 | | b2+20b+64=0 | | b2+-20b+36=0 | | 2x+2x=x+8+10 | | b=2000(1.05^3) | | -3(15x-9)=117 | | x=36-8x | | 8(x+1)+-3x-8=-25 | | 20x+400=1280 | | 2x+8=5x+8–3x | | a=35a-9= | | 6=11-y | | 4=2+t | | 7x+5x+2=8x+2x+4 | | 10+8f=–8+8f |